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Abstract
In Horschler et al. (Anim Cognit 22(2):187–198, 2019), we found that two components of executive function (short-term 
memory and self-control) were strongly associated with estimated absolute brain weight across dog breeds, and argued that 
dogs present a powerful model for studying evolutionary links between cognition and neuroanatomy due to their extraordinary 
degree of intraspecific morphological variation. In a commentary on this work, Montgomery (Anim Cognit, 2019) raises 
concerns about the practice of estimating brain weights from brain–body scaling relationships. Montgomery explores the 
practical significance of this approach, ultimately concluding that such estimations should be avoided. In this response, we 
point out some limitations of the analyses presented by Montgomery and consider his conclusions in light of these issues. 
We then explore the extent to which body weight serves as a valid proxy for brain weight under varying conditions. Through 
simulations, we show that the consequences of using body weight as a proxy for brain weight depend on parameters includ-
ing effect size, the correlation between brain and body weight, and the variance in brain and body weight within a sample. 
Under conditions approximating those in Horschler et al. (Anim Cognit 22(2):187–198, 2019), we find that body weight is 
a reliable proxy for brain weight, and that statistical results from models using either brain weight or body weight as predic-
tor variables are highly convergent. Nonetheless, we wholeheartedly agree with Montgomery that empirical data on brain 
weight, structure, and cellular composition will be critical for creating new opportunities to investigate the relationships 
between neuroanatomy and cognition in dogs.
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In his commentary on Horschler et al. (2019), Montgomery 
(2019) raises concerns about using brain weight estimates 
derived from brain–body scaling relationships in compara-
tive studies. He notes the potential for error arising from this 
approach and ultimately concludes that it should be avoided. 
While we agree with many of the points in Montgomery’s 
commentary, we differ in our interpretation of some criti-
cal issues, and argue that estimates of brain weight based 
on body weight can be effectively employed when certain 
conditions are met. Below, we first address some specific 
points from Montgomery’s commentary, and then present 

analyses using empirical and simulated datasets to assess the 
conditions under which body weight can serve as a reliable 
proxy for brain weight in comparative studies.

In Horschler et al. (2019), we used the brain–body weight 
scaling relationship in dogs identified by Bronson (1979) to 
derive breed-average brain weight estimates for 74 breeds 
with known breed-average body weights. We then explored 
the relationships between estimated breed-average brain 
weight and a range of cognitive measures from the citizen 
science project Dognition. In his commentary, Montgom-
ery notes that despite the high percentage of variance in 
brain weight explained by body weight (R2 = ~ 0.92), the 
error observed in brain weight estimates for some breeds in 
Bronson’s original dataset is still high (mean = 5.3%, max 
= 13.9%). First, it is important to interpret this degree of 
error within the context of the range of body weights and 
estimated brain weights in our sample. Within our sample, 
body weights ranged from 3.4 kg to 59.8 kg (an over 17-fold 
difference) and estimated brain weights ranged from 55.1 to 
121.7 g (an over 2-fold difference). Although the percentage 
error in these brain weight estimates is non-negligible, the 
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effects of this error are greatly minimized when there is high 
variance in brain weight (an issue we illustrate empirically 
below). Second, Carreira (2016) showed that the scaling 
relationship identified in Bronson (1979) accurately pre-
dicted brain weight from body weight in an independent 
sample of 69 dogs including brachycephalic, mesocephalic, 
and dolichocephalic individuals representing a similarly 
wide range of brain weights (41.2–116.2 g). Therefore, we 
believe it is unlikely that error induced from Bronson’s scal-
ing equation had a significant influence on the relationships 
we observed.

Montgomery also presents new analyses using known 
brain weights and body weights from Bronson (1979) to pre-
dict breed-average cognitive measures from the Dognition 
dataset (Stewart et al. 2015). As he notes, it is possible that 
Bronson’s observed brain and body weights may not be rep-
resentative of true breed averages because of the small sam-
ple sizes within some breeds. We share this concern and did 
not include these or similar analyses in the original paper for 
this reason. In contrast to Bronson’s dataset, the dataset we 
used to obtain breed-average body weights [Canine Behav-
ioral Assessment & Research Questionnaire (C-BARQ); Hsu 
and Serpell 2003] includes measures from thousands of dogs 
and is more likely to be representative at the breed level. 
For example, genome-wide association studies using breed-
average body weight reported in the C-BARQ identify the 
same genetic variants associated with body size in several 
other cross-breed studies (MacLean et al. 2019). Compar-
ing breed-average body weights between the Bronson and 
C-BARQ datasets, we find large discrepancies in many cases 
(mean difference = 14.8%, max difference = 49.3%). Note, 
however, that this limitation does not preclude using Bron-
son’s data to describe the scaling relationship between brain 
and body weight across dogs of different sizes, as Bron-
son measured both brain weight and body weight from the 
same individuals to quantify the relationship between these 
variables (and the scaling relationship has been validated in 
independent datasets).

Montgomery ultimately argues that estimating brain 
weight from a scaling relationship adds no additional infor-
mation to the analyses because estimated brain weights are 
merely linear transformations of body weight. We agree 
that the transformation of body weight to estimated brain 
weight does not do any additional explanatory work, nor 
did we intend it to. However, there are some benefits of 
using brain weight estimates rather than body weights in 
the statistical analyses. For example, the beta coefficient for 
the predictor variable can be interpreted in units of brain 
weight rather than body weight. In turn, this facilitates pre-
dictions about how cognitive measures may vary across a 
range of brain weights (rather than body weights) and sets 
up testable hypotheses for future datasets involving meas-
ures of brain weight (which may be obtained independently 

from measures of body weight). By reporting and analyzing 
estimated brain weights rather than only body weights, it is 
also easier to relate our findings to previous work linking 
brain size to cognition within and across other non-primate 
mammals [which generally adhere to the same interspecific 
neural scaling rules (Herculano-Houzel 2012)]. Therefore, 
while we agree with Montgomery that purely from a mod-
eling perspective estimating brain weight from body weight 
does little explanatory work, this approach is still valuable 
in guiding hypotheses for future studies and situating our 
results within the context of a larger body of literature on 
relationships between brain size and cognition.

As Montgomery points out, we reported that models 
using estimated brain weight rather than body weight as the 
predictor variable generally had lower AIC values, but noted 
that the differences in AIC were very small (i.e., less than 2). 
We agree that these comparisons cannot assess whether brain 
weight or body weight is a better predictor of a dependent 
measure. However, disentangling the associations between 
body weight, brain weight, and cognitive measures was not 
the main aim of our work, and would have been impossible 
given the data available. Rather, our primary aim was to 
exploit the strong scaling relationship between brain and 
body weight to estimate associations between brain weight 
and the cognitive measures. Nonetheless, even in cases 
where both brain and body weight are known, disentangling 
associations with these variables can be challenging due to 
their strong collinearity (MacLean et al. 2014). Therefore, 
when making causal inferences, rather than blindly relying 
on statistical results, researchers must also consider plausi-
bility at a biological level. Given that cognition is critically 
dependent on the brain, and innumerable studies reveal links 
between neuroanatomy and cognition (Benson-Amram et al. 
2016; Buechel et al. 2017; Deaner et al. 2007; Healy and 
Krebs 1992; Kotrschal et al. 2013, 2015; Krebs et al. 1989; 
MacLean et al. 2014; Overington et al. 2009; Reader and 
Laland 2002; Sol et al. 2008; Sol et al. 2005), there is a rea-
sonable basis for inferring that these associations are driven 
by brains more so than bodies. Nonetheless, we acknowl-
edge the possibility of other confounding variables (many of 
which we attempted to control for, including genetic related-
ness, training history, perceptual factors due to differences 
in skull shape, and breed group), as it is always possible that 
an association is mediated by an unidentified variable not 
included in the analysis.

Setting aside the issue of causal inference, we now return 
to the question of whether body weight can serve as a use-
ful proxy for brain weight in comparative studies with dogs, 
which we address through a series of simulations. The main 
aim of these simulations was to assess concordance between 
the results of models using either brain weight, or body 
weight as a proxy variable for brain weight, in regressions 
where the dependent measure is associated with brain weight 
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at a given correlation. A key assumption in our original 
paper was that body weight could serve as a reliable proxy 
for brain weight if the following two conditions were met: 
(1) the correlation between brain weight and body weight 
was high, and (2) the values being predicted were distrib-
uted across a sufficiently large range such that the amount 
of (inevitable) prediction error for individual points would 
be negligible compared to the variance of the values being 
estimated. Through the following simulations, we will argue 
that both conditions were met in the original paper, and, 
therefore, that body weight could be used as a reliable proxy 
for brain weight in this dataset.

The first condition is central to the use of any proxy vari-
able because the utility of a proxy variable depends on the 
strength of its association with the variable it indexes. In the 
case of brain and body weights, many comparative analyses 
confirm that these variables obey log-linear scaling relation-
ships, with high R2 values. But as Montgomery notes, R2 val-
ues are properties of a particular regression, not individual 
data points. Indeed, the strength of the relationship between 
brain and body weight—and thus the degree to which body 
weight can stand in for brain weight—is related to the vari-
ance of the distribution. To illustrate this point, we used a 
recently published dataset on brain–body scaling relation-
ships in 1552 mammalian species (Burger et al. 2019). With 
this dataset, we divided observations into 11 quantile groups 
based on brain weight. We then generated five smaller data-
sets, based on random sampling of the parent dataset, but 
varying which quantile groups samples were drawn from. 
The first of these datasets sampled evenly across all quan-
tiles; the second was restricted to observations between the 

3rd and 9th quantiles; the third was restricted to observations 
between the 4th and 8th quantiles; the fourth was restricted 
to observations between the 5th and 7th quantiles; and the 
fifth included only observations in the 6th quantile (Fig. 1). 
Using each of these datasets, we assessed the strength of 
the correlation between log-transformed brain weight and 
log-transformed body weight using Pearson correlation. As 
shown in Fig. 1, the strength of the relationship between 
brain weight and body weight decreases monotonically 
across samples drawn from increasingly constrained ranges 
within the parent distribution, despite the number of obser-
vations in each subsample being held constant. Therefore, 
Fig. 1 illustrates with empirical data that the ranges of vari-
ation in samples of brain weight and body weight relate to 
the strength of the relationship between these variables; 
brain weight and body weight are more strongly correlated 
as the ranges get larger. In other words, the reliability of 
body weight as a proxy for brain weight is contingent on a 
sufficient range of variation in these variables, a point we 
return to below.

We next ran a series of simulations to assess the extent 
to which regressions using brain weight versus body 
weight as a proxy for brain weight produce convergent 
results under a range of conditions. Across iterations, 
we (1) simulated two quantitative variables with the 
same means and variances, representing brain and body 
weight.1 These variables were set to be correlated at R 

Fig. 1  Correlation between brain and body weight in distributions 
sampled from increasingly restricted ranges of a parent distribution. 
The top panels show scatter plots and a linear fit between brain and 

body weight within each subsample. The bottom panels show the 
range of the parent distribution (in standard deviation units) from 
which the data points were sampled

1 These variables were simulated to have the same means simply to 
facilitate comparison of beta coefficients from subsequent models.
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= 0.9, slightly below the correlation coefficient between 
brain weight and body weight in Bronson’s original dataset 
(R = 0.96; Bronson 1979) and between brain volume and 
body weight in a newly published dataset including 61 
dogs representing 33 different breeds after the exclusion 
of 1 outlier (R = 0.91; Hecht et al. 2019). (2) We then 
generated a third quantitative variable, to be treated as the 
dependent measure, which was specified to have a fixed 
correlation with brain weight, without explicitly assigning 
any correlation between this variable and body weight. 
Across simulations, we varied the strength with which the 
dependent measure was correlated with brain weight, test-
ing all values between R = 0.01 and R = 0.99, in incre-
ments of 0.01. (3) We next generated three smaller datasets 
from this parent distribution using random sampling, but 
as above, varied which quantile groups these observations 
were sampled from to generate distributions with high, 
moderate, and low variance in brain and body weight. 
For the high-variance distribution, samples were drawn 
evenly from across 20 quantile groups (1st–100th percen-
tiles). For the moderate-variance distribution, samples 
were drawn evenly from the 6th through 15th quantiles 
(26th–75th percentiles). For the low-variance distribution, 
samples were drawn from the 9th through 12th quantiles 
(41st–60th percentiles). The total number of observations 
in each subset was held constant (N = 200), regardless of 
the number of quantile groups samples were drawn from. 
(4) Lastly, we fit two bivariate regressions. The first model 
predicted the dependent measure as a function of brain 
weight; the second predicted the dependent measure as a 
function of body weight. We compared the results of these 
models by extracting the following parameters:

• Absolute value of the percentage difference in the β coef-
ficients from the brain weight and body weight models.

• Absolute value of the difference between the p values for 
the brain weight and body weight β coefficients.

• Whether the significance of null hypothesis tests (Wald 
test, ɑ = 0.05) on the brain and body β coefficients dif-
fered between the two models.

In total, we simulated 148,500 regressions, consisting of 
500 regressions per dataset (N = 3) at each of the different 
effect sizes (N = 99). The results of these simulations are 
shown in Fig. 2.

Figure 2a shows the mean percentage difference in the β 
coefficients for brain weight and body weight across datasets 
with different variances, and across a range of effect sizes 
(the strength of the correlation between brain weight and 
the dependent measure in the parent dataset). If both models 
produced similar results, we expected the β coefficients to 
be similar, because both the brain and body weight vari-
ables were simulated to have the same means and variances. 
The key takeaways from Fig. 2a are: (1) the differences in 
β coefficients are dramatically smaller in the high-variance 
distributions, because brain weight and body weight main-
tain the highest correlation in this case, as demonstrated 
with an empirical brain weight and body weight dataset 
above; (2) for all distributions, the differences in β coef-
ficients are reduced with increasing strength of the associa-
tion between brain weight and the dependent measure. For 
the high-variance distribution, the β coefficients for brain 
weight and body weight become negligibly different once 
the effect size reaches R ≥ ~ 0.25. Figure 2b shows a similar 
effect for the (mean) difference in p values for the β coef-
ficients in the brain weight and body weight models. As 

A B C

Fig. 2  Agreement between bivariate regressions predicting a dependent measure based on either body weight or brain weight. See text for details
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the effect size reaches R ≥ ~0.25, the mean difference in p 
values for the brain weight and body weight β coefficients 
drops below 0.001. Figure 2c illustrates the percentage of 
cases in which the null hypothesis would be rejected for 
one of the two models, but not the other. We can interpret 
this as a categorical measure of discrepancy between the 
brain weight and body weight models. Temporarily setting 
aside differences between the low-, moderate-, and high-
variance distributions, some common patterns emerge. First, 
when the strength of the association between brain weight 
and the dependent variable is low (e.g. R < ~ 0.1) there is 
high agreement between the brain weight and body weight 
models, both of which typically fail to detect an association. 
As the correlation between brain weight and the dependent 
measure begins to increase, there is an uptick in discrepant 
results between the brain weight and body weight models, 
reflecting cases in which the true signal is detected in the 
brain weight model, but not the body weight model. Lastly, 
as the correlation between brain weight and the dependent 
measure approaches R = 1, there is once again high agree-
ment between the brain weight and body weight models, 
both of which detect the underlying association. Despite 
these commonalities, there are also clear differences between 
the datasets characterized by low, moderate, and high vari-
ance. Specifically, when there is high variance in the brain 
weight and body weight data, only a moderate association (R 
= ~ 0.25) between brain weight and the dependent measure 
is required for this effect to be reliably detected using either 
brain weight or body weight as the predictor variable.

Given these results, what inferences might we make about 
the consequences of using of body weight to estimate brain 
weight in Horschler et al. (2019)? In Horschler et al.’s paper, 
the range of variation in body weight was relatively high, 
with 3.37-fold variation within the interquartile range. In 
the simulation presented above, the average fold-variation 
across the interquartile range for the low-, moderate-, and 
high-variance distributions was 1.22, 1.69, and 3.33, respec-
tively, aligning the data from Horschler et al. closely with 
the high-variance distribution in our simulation. Second, for 
the major findings in the Horschler et al. paper, the correla-
tion coefficient between estimated brain weight (derived as a 
linear transformation of body weight) and the outcome was 
R = ~ 0.54. Interpolating this value against the functions in 
Fig. 2, we see that under conditions closely matching the 
Horschler et al. study, p values for a brain weight versus 
a body weight model typically differ by less than 0.0001, 
beta coefficients for the two models are within 10% of one 
another, and the decision to retain or reject the null hypoth-
esis is the same in all cases across 500 simulated scenarios 
with these parameters. Therefore, while there are certainly 
numerous advantages of obtaining direct measures of brain 
weight, at a practical level, hypothesis tests using either 
brain weight or body weight as the predictor variable are 

expected to yield highly similar results. Rather than treating 
this as an inescapable problem, we view it as an opportunity 
to probe possible links between absolute brain weight and 
cognition in dogs, despite the current lack of high-quality 
data on neuroanatomical variation across breeds (but see 
Hecht et al. 2019 for new work in this direction).

Of course, no simulation will ever resolve empirical ques-
tions about the relationships between brain weight and cog-
nitive variation among dog breeds. However, these simula-
tions do help to determine when and to what extent certain 
assumptions may be justified, given knowledge about the 
strength of the association between brain and body weight 
and an observed effect size. On these grounds, the simula-
tions above suggest that the assumptions in Horschler et al. 
(2019) were both reasonable and modest. Therefore, while 
our findings should still be interpreted with caution, we 
argue that they hold value in guiding new testable hypoth-
eses about how variation in diverse cognitive processes 
may be linked to aspects of neuroanatomy, both in dogs 
and across other species. Nonetheless, we wholeheartedly 
agree with Montgomery that obtaining empirical data on 
brain weight, structure, and cellular composition across dog 
breeds will be critical for future work on these questions, and 
we look forward to progress in this area.
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